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FOREWORD

This paper presents a contribution to the study of decision making under
uncertainty. All decisions are actually made under some degree of uncertainty,
and hence it is important to develop models that explicitly take into account
the uncertainties present in particular decision situations. Because decisions
must be made on the basis of finite information, models are sought that can
readily incorporate all available data into the decision-making process. This
is what the Bayesian approach attempts to do.

The Weibull process is well known in the reliability field: therefore the
Bayesian analysis presented here has potential application to all decisions in-
volving equipments with probabilistic lifetimes. It is an extension of analyses
that appeared in RAC-TP-215* and RAC-TP-225.*

Nicholas M. Smith
Head, Advanced Research Department

*R. M. Soland, "Bayesian Analysis of the Weibull Process with Unknown Scale
Parameter," RAC-TP-215, Research Analysis Corporation, Aug 66.

tR. M. Soland, "Use of the Weibull Distribution in Bayesian Decision Theory."
RAC-TP-225, Research Analysis Corporation, Aug 66.
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ABSTRACT

The author previously examined the Weibali process with unknown scale parameter
as a model for Bayesian decision making. Here the analysis is extended by treating
both the shape and scale parameters as unknown. It is not possible to find a family of
continuous joint priordistributions on the two parameters that is closed under sampling;
hence a family of prior distributions is used that places continuous distributions on the
scale parameter and discrete distributions on the shape parameter. Prior and posterior
analyses are examined and seen to be no more difficult than for the case in which only
the scale parameter is treated as unknown, but preposterior analysis and determination
of optimal sampling plans are considerably more complicated in this case.

Two examples are presented to illustrate the use cf the present model. In the
first of these it is necessary to make probability statements about the mean life and
reliability of a long-life component both before and after life testing. The second ex-
ample involves determination of the probability distribution of the number of replace-
ment items needed by a group of users during a specified time interval.



1. INTRODUCTION

During the last fevw ye,-n mnihor of papers have riealt with the Dayesian

approach to reliability and maintainability problems (see Refs 1-5). In Ref 6

some desiderata were examined for Bayesian analysis of reliability problems

and it was observed that the Weibull distribution possesses the desirable prop-

erties of (a) assuming a fairly wide range of shapes depending on the values

of the parameters and (b) generating a likelihood function of relatively simple

form. In the appendix of Ref 6 we attempted, without success, to find a mathe-

matically tractable continuous joint prior distribution for the scale and shape

parameters of the Weibull process that would lead to a posterior distribution

of the same form. In Ref 7 a detailed analysis (including prior, posterior, and

preposterior analyses) of the Weibull proccss with unknown scale parameter

was performed, i.e., for the situation in which the decision maker, as a matter

of policy, assumes the value of the shape parameter to be known.

In many cases, however, it will be desirable to incorporate uncertainty

about the shape parameter also, so here the analysis is extended by treating

both the shape and scale parameters as unknown. In Sec 2 the Weibull process

is defined, the likelihood function is examined, and a family of prior distribu-

tions is chosen that places continuous distributions on the scale parameter and

discrete distributions on the shape parameter. This family of distributions is

closed under sampling and is relatively easy to work with. Prior and posterior

analyses are then examined and seen to be no more difficult than for the case

in which only the scale parameter is treated as unknown. In Sec 3 preposterior

analysis and the determination of optimal sampling plans are examined. These

are considerably more difficult than in the case in which only the scale param-

eter is assumed unknown. It seems that Monte Carlo simulation or a combina-

tion of Monte Carlo simulation and numerical integration may be the best way

to perform preposterior analysis. Section 4 presents two numerical examples

3



to illustrate potential uses of the Bayesian approach to reliability in general

and of the present model in particular. In the first of these it is necessary to

make probability statements about the mean life and reliability of a long-life

component both before and after life testing. In such situations it is very

probable that few failures will be observed during the life test. The second

example involves determination of the probability distribution of the number

of replacement items needed by a group of users during a specified time in-

terval. Estimates of such distributions are required both before and after ob-

serving the lifetimes of some items in the actual replacement process.

2. PRIOR AND POSTERIOR ANALYSES

Definition of the Weibull Process

A Weibull process is defined as a stochastic process that generates in-

dependent random variables cl, . , , . . . ,with identical densities

0. A, (,)

Here a is the shape parameter, and the quantity 77 = ý b: is usually called

the scale parameter: the parameterization used in Eq (1) is preferred because

it "separates" the two parameters (i.e., replaces the factor 7->: by ý) and

thereby simplifies subsequent algebraic manipulations. The distribution func-

tion corresponding to the density above is

- - (2)

It is henceforth assumed that X• and a are unknown. In practical terms,

this is a situation in which a decision maker is willing to assume a Weibull

process is generating the independent lifetimes of copies of some particular

mechanism or system and wishes to treat the two parameters as unknown.

Likelihood of a Sample

Suppose a censored sample from the Weibull process generates the ob-

servations x1, . . . , x, and the information X > x X > x". Call

this evidence z. Such a sample will usually correspond to observing r lifetimes
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of x 1 ,... , Xr and observing that n - r mechanisms or systems have operated

for times xr, 1, ' . . , x,, without failing. If the stopping process is noninforma-

tive, as defined in Sec 2.3 of Raiffa and Schlaifer, 8 then the likelihood of this

evidence z is

RFJ'{:IA,2 f(X 1 A c.C)][1 [I - F~ (xA.~

(3)

Prior Distribution of (, a)

When the doublet (0, a) is to be treated as unknown, as is assumed here,

the decision maker ought to place a prior distribution on (0, ). It is generally

desirable that the prior distribution be a member of a family of distributions

that is closed in the sense that the posterior distribution is also a member of

this family. The advantage of this is that the same formulas and procedures

can be used to calculate expected utility values and the value of information

with respect to both the prior and posterior distributions. If sufficient statis-

tics of fixed dimensionality exist, a family of natural conjugate distributions

exists and is closed in the above sense (see Ref 8, pp 44-47). Unfortunately,

sufficient statistics of fixed dimensionality do not exist for the Weibull process

if it is assumed that the shape parameter & may take on any of an infinite num-

ber of values.

In the remainder of this paper a is treated as a parameter that may take

on any of a finite number of values. Sufficient statistics of fixed dimensionality

then exist: the family of natural conjugate distributions then places finite dis-

crete distributions on the specific set of values that o may assume, and, con-

ditional on a particular value of c,. places a continuous gamma-i distribution

on X.

Specifically, this family of distributions allows 2; to assume any of m

values in (0, -), and the prior distribution on (, 5) is formed as follows: Let

p, Prob I ail. 1. . (4)

where, of course, , p,[ = 1. The conditional density of ), given a a,, call
I I i

it f( 0l 1), is taken to be the gamma-I density

5r



A¢' " (5)y[G rI a, "r I fi

f(I"( 2'., ) /'' (A r"'. " , 1 ... .

where 0 •- X < - and 0 < r,', Y' < % Note that oI('1 ) depends on a, only through
the dependence of its parameters, r,' and y on the index i. Also note that the

superscript ' is used to designate parameters of the prior distribution: the

superscript "is used similarly for the posterior distribution.

Posterior Distribution of (3, ')

In the expression for the likelihood of the evidence z, Eq (3), we define
r it A'

the statistics r, t, nlI xi, andy, x' , =1, xm. The likelihood

may then be written as

Bayes' theorem then yields a posterior distribution of the same form as the

prior distribution with

Prnb 1 - 2 P,'
p | "', r l ' 2V' 1'" I ' r ", Y , l "(r , "

I _ 1 r~ (6)

P,1 J(N (r

=1, ... m, m,and

j'(Aj

where

+- . >, y, ", (8)

Note that Eq (6) gives a posterior marginal probability and Eq (7) gives a pos-

terior conditional density.

Terminal Analysis

Suppose the decision maker wishes to choose an act o from a set ,.% of

possible acts, and his terminal utility (terminal means that no sample informa-

tion is to be obtained) for an act a and particular value 0, a,) is u,(a; 0, ).

The expected utility of act a is then

L;. au, (a; .j) E~ E A

(9)
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The notations E ,.•, E, - etc indicate that expectation is taken with respect

to the prior distribution of (', •), the conditional prior distribution of _., given

a = ,, etc. Equation (9) shows that for our choice of prior distribution on'

(0', •) it is no more difficult to compute the expected utility of act a than it is

for the case in which a is assumed known and the prior distribution on • is

gamma-I (see Refs 6 and 7).

The decision maker ought to choose an act a' whose expected utility is at

least as great as that of all other acts, i.e., E'.u! (a': , ) u ut(a;J',"'),

a E A. If he desires an indication of how much is at stake if he makes a de-

cision based solely on his prior distribution, he can compute the expected value

of perfect information (EVPI):

( M ax li, (0. j.

S ,v'ia

Thus the EVPI may also be obtained with no more difficulty than when a' is

assumed known.

If an experiment c yields evidence z that leads to a posterior distribution

with parameters p,, rF, and y\, i = 1, . . . ,m, the decision maker will compute

the expected utility of each act with respect to this posterior distribution. Ex-

pression (9) is used with p," and E',i, replaced by p;'and E7':.•

3. SAMPLING AND PREPOSTERIOR ANALYSIS

If the decision maker is contemplating experimentation he will generally

have a utility function u(e;:;a: X; a') defined for each comnbination of experiment

e, outcome :, subsequent action a, and state of nature (X, a). Before experi-

ment e is performed the evidence - is a random variable, and so the overall

utility of experiment e is

V; e - mtc , . ,,(c E: . ) . (10)

The final step in preposterior analysis is to find an optimal experiment C

i.e., one such that

S( ) max it (c).
C
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It should be clear from Eq (10) that the distribution (if is a necessary

ellement in Une prcs ,ef tpreixvterin,' T vj n noir ease the evidence

is the vector ( , r ,v .... y,). Unfortunately, it does not appear to be pos,!-

ble to obtain the joint distribution of these statistics in any reasonable form.

One way to evaluate ii (c) for a particular experiment or sampling plan c

is to use Monte Carlo simulation to estimate the right-hand side of Eq (10).

This can be done by replacing the operator F,,,. by the sequence L'. Ez;,.,A.:.

For particular values of X and a' a sequence of values :, may be generated via

Monte Carlo for the particular experiment e. For each k the quantity

max E. _,u(e; z;a , a; ) can be readily obtained by terminal analysis so that

an estimate of
L , .. . .. . ý-(. z• e.€ a; A : . I'•( 1

may be obtained. To complete the estimation of u*(c) the expected value of

the quantity in Eq (11) must be taken with respect to the prior distribution of

(', •); and this may be approximated by computing a sequence of estimates of

the quantity in Eq (11), one for each random draw of a pair (X, o) from the

prior distribution, and using the average of these estimates. Alternatively, the

operator E' may be replaced by ; p', ; one sequence of random draws
S~of X, is then required for each c,, .

It will not generally be possible to complete preposterior analysis and

find an optimal experiment c because of the need to estimate ii(c) numeri-

cally; but an appropriate search procedure, together with the Monte Carlo

method outlined above, could be used to find a "very good" experiment. Several

sampling plans that might be considered in the present context were briefly

discussed in Ref 7.

4. EXAMPLES

In this section two small examples are presented to illustrate the poten-

tial uses of the Bayesian treatment of a Weibull process with unknown scaR'

and shape parameters. In the first of these it is necessary to make probability

statements about the mean life and reliability of a long-life component both

before and after life testing. The second example involves estimation of the
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probability distribution of the number of r.np.•4oment ir ...... agoup

of users during a specified future time interval.

A Reliability Example

A certain long-life component was developed for use in a communications

satellite. Before a decision was made concerning its use in the satellite, or

whether several of them should be used in parallel redundancy, some informa-

tion was desired about its reliability and mean life. Based on experience with

similar components, the design engineers felt that the lifetime distribution of

the present model could be adequately represented by a Weibull distribution

with shape parameter a less than one. Three possible values of a were chosen:

= 0.7, a., 0.8, and a - 0.9. The prior probabilities decided on were

p - 0.3, p. , 0.4, and p.i = 0.3. The engineers felt that the probabilities

were 0.5 that such a component would last more than 12,000 hr and 0.2 that

one would last more than 41,000 hr. Assuming that these statements were to

hold for each of the three possible values of a, and using the fact that

(, (,\,, [I A

we niumerically solved for the appropriate prior parameters r; and y," and

found r, = 26.12, Y 2.665 x 10", r' = 3.44, y' = 8.218 x 10:', r:' = 1.91,

y3 = 1.074 >Y 104.

The following statements then follow from the prior distribution on (•, •).

The probability that such a component will last at least 6 months (12 months)

is 0.721 (0.577). The expected mean life is 30,280 hr and the probability is

0.418 that the mean life lies between 20,000 hr and 40,000 hr.

It was decided to get additional information about the lifetime character-

istics of this component by performing a life test under simulated operating

V ~ conditions. Twenty-five items were placed on life test. The first failure

occurred after 600 hr and the second occurred after 1500 hr. After each of

the failures a new item was substituted for the failed one. Now the life test

has been in operation for 2000 hr and we wish to make an interim evaluation

of the lifetime characteristics. The sufficient statistics of the data are r =

2,i - (600) (1500) = 9 10', ) - (23) (2000)P' + (600)"'7 + (1400)"07 + (1500).. +

(500)".7 = 5.192 x 10', .2 = 11.046 x 10', Y:. = 23.496 > 10'. Bayes' theorem

9 RAC



yields the following parameters of the posterior distribution: pi = 0.191,

p," = 0.430, p:- 0.379, 28.12, yj' 3.184 x 10", r 5.44, Y.',

1.926 X 104, r• = 3.91, y:1 3. 43 4  x 10'.

The posterior distribution on 0•, o) implies the folowing statements. The

probability that such a component will last at least 6 months (12 months) is

0.790 (0.665). The expected mean life is 37,460 hr and the probability is 0.328

that the mean life lies between 30,000 hr and 50,000 hr. If two such components

are placed in active redundancy, the probability is 0.875 that at least one of

them will be operating after 12 months. This probability is obtained as

I- L,.,I. [rF 11A.d] 2

for E = 12 months.

A Replacement Example

A common problem is the estimation of future demand for replacement

parts. One discussion of the application of renewal theory to this problem is

found in Ref 9; Goldman"' and Howard" have discussed the advantages of using

Bayesian methods in such problems. Here an example will be worked out in

which it is desired to estimate the probability distribution of the number of

replacement items to be demanded by a fleet of users, and the lifetime distri-
bution of the item in question is assumed unknown.

A new type of fuel pump has been developed and placed in each of 10,000

new trucks that the company has recently assembled. We wish to estimate the

probability distribution of the number of replacement pumps to be demanded

in the next 2 years. We shall treat each new truck as an ordinary renewal

process with respect to the replacement of fuel pumps. The characteristics

of such a renewal process are determined by the underlying lifetime distribu-

tion, i.e., the lifetime distribution of the fuel pumps. We assume this distribu-

tion to be a Weibull distribution with (X, a') unknown. The prior distribution

on (5, ) has ey = 3.50, a2 = 3.75, &:j = 4.00, p1 = 0.3, P; = 0.35, p:j = 0.35, rj =

12, y' =4.8 x 10'7, r" = 6, y2 = 3.4 x 10"', r:, = 3, y. =2.4 x 10"'. The

expected mean life is then 50,660 miles. We shall assume that each truck

travels 30,000 miles in 2 years; we could relax this assumption and instead

DC 10
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use the probability distribution of the number of miles traveled (see Ref 9), but 3
thiS . vul,, u s y c -plicALe the present example.

Our method of estimating the required probability distribution is as fol-

lows. For particular values X and a, some results from renewal theory will

be used to determine the mean and variance of the number of replacement

pumps demanded for one truck. Because the 10,000 trucks are treated as

10,000 independent renewal processes, we will then add the means and variances,

i.e., multiply the mean and variance of a single process by 10,000,to determine

the mean and variance of the number of replacements, call it ti, for the entire

fleet. The distribution of n, still conditional on the values X and a, is approxi-

mately normal. To obtain the unconditional distribution function of n, call it

F(n), we would take the expectation, with respect to the prior distribution of

S(•, •), of F(ti IX, a), the conditional distribution of ', given "• = A and a = r.

Here just the mean and variance of ,i will be found.

Let N,, (0 1 , a) be the number of renewals in the interval [0, (3 in an or-

dinary renewal process in which the underlying lifetime distribution is Weibull

with parameters X and a (t = 30,000 in this case). The quantities E[tN,, (t IX, a)I

and variance [ N0(t IjX, a)) can be found in the tables of Ref 12 for specific values

of X and a. Now let n,(tl X, a) be the total number of renewals in the interval

[0, t] in 10,000 such renewal processes. Then the quantities E{, ,(t AX, u)],

1,2, may be easily obtained from the moments of N,(t IX, a). Finally we

must compute E J-[b,, (tr Ix, 0)}, j 1,2, and we shall approximate these

quantities by

I U {

where u takes the values 0.05(0.10) 0.95 and Xu, is the uth fractile of the con-

ditional prior distribution of •, given a = a,. This distribution is gamma-1,

so the appropriate fractiles may be found in the tables of Thorn."

The computations implied in the foregoing yield 2680 and 950 for the mean

and standard deviation of the number of replacements for the fleet of 10,000

trucks.

Suppose now that several years have passed and we wish to estimate the

probability distribution of the number of replacement pumps to be demanded

11



in we iormncommng 2 years. zuppose tnat mnorougn maintenance recoras are

available for 50 of the trucks so that from these data it is possible to update

the probability distribution of (',•); the sufficient statistics are r = 14,

u = 3.5 x 10 y = 5.? x 10"7, Y2 = 6.4 x 10'H, y:- 9.8 x 10"'. The pos-

terior distribution then has p1, = 0.984, p 2 0.016, p:" = nil, and the posterior

expected mean life is 49,380 miles.

To simplify matters it will again be assumed that each truck travels

30,000 miles in 2 years and also that all 10,000 trucks operate during this

time interval; both assumptions could be relaxed. The computational procedure

is the same as the one u,,3ed previously, except that, because the trucks are

several years old, the pump replacements will be treated for each truck as

being generated by an equilibrium renewal process instead of an ordinary re-

newal process. The computations yield 8100 and 440 for the mean and standard

deviation of the total number of replacement pumps for the fleet of 10,000 trucks.

SC12
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